| TIP: Click on subject to list as thread! | ANSI |
| echo: | |
|---|---|
| to: | |
| from: | |
| date: | |
| subject: | Stringy Holes 02/0 |
(Continued from previous message) in string theory, the singularity disappears - a comforting realization for physicists who have a strong distaste for any infinite quantity. In addition, black holes have no empty space; the strings are extremely compressed, but they fill the entire space from the singularity out to the outer boundary. And because a black hole made of strings lacks a perfect outer boundary, it behaves like any other scrunched-up ball of matter. Just as matter and energy can escape a compact, high-density object like a neutron star, matter and energy can gradually escape a black hole despite the intense gravitational forces. "This solves the information paradox, because black holes radiate energy like any other body," says Mathur. In the relativist view, two black holes with the same mass and spin are identical. But in the string theory view, no two black holes are exactly alike, because they form from different material. "We find many different kinds of black holes, with many different internal states," says Mathur. Mathur points to these calculations as one more indicator that string theorists are on the right track in developing a quantum theory of gravity - a "theory of everything" that reconciles the two seemingly disparate pillars of 20th-century physics: quantum mechanics and general relativity. Amazingly, both string theory and general relativity predict the exact same diameter for a black hole of any given mass - even though the two calculations are entirely independent. In addition, the calculated radiation from a black hole made of strings exactly matches the properties that quantum mechanics predicts for the Hawking radiation. "String theory is so miraculous that whenever it comes up to a problem, it always gives us the right numbers," says Mathur. It is for reasons like this, and the internal self-consistency of string theory, that its adherents feel confident they are hot on the trail of nature's deepest secrets. "The black hole information paradox is crucial," says Mathur. "If we can't resolve it, quantum mechanics and general relativity cannot be put together." If some of the extra dimensions in string theory are larger than a certain size, physicists might soon be able to test these ideas in the laboratory. Starting around 2007, the Large Hadron Collider (LHC) in Switzerland will smash subatomic particles into one another at extremely high energies. Some theorists have hypothesized that if the extra dimensions are as large as a few millimeters in diameter, these particle collisions will create miniature black holes, which will almost instantaneously evaporate in bursts of Hawking radiation. By analyzing the particles in the Hawking radiation, physicists might be able to determine the fundamental nature of black holes and whether the Hawking radiation carries information about the material that formed them. "I bet if mini-black holes are produced at the LHC or future colliders, we will be able to study Hawking radiation to death and answer all of these impending questions," says Landsberg. But many physicists, Mathur included, remain skeptical that the extra dimensions in string theory are large enough to enable black holes to be created at the LHC. If so, it might be centuries before experiments shed light on the information paradox. Press Center Copyright 2004 Sky Publishing Corp. ___ þ OLXWin 1.00b þ (A)bort, (R)etry, (W)hackitonthesideofthemonitor! --- Maximus/2 3.01* Origin: Sursum Corda! BBS-New Orleans 1-504-897-6006 USR33k6 (1:396/45) SEEN-BY: 633/267 270 @PATH: 396/45 106/2000 633/267 |
|
| SOURCE: echomail via fidonet.ozzmosis.com | |
Email questions or comments to sysop@ipingthereforeiam.com
All parts of this website painstakingly hand-crafted in the U.S.A.!
IPTIA BBS/MUD/Terminal/Game Server List, © 2025 IPTIA Consulting™.