| TIP: Click on subject to list as thread! | ANSI |
| echo: | |
|---|---|
| to: | |
| from: | |
| date: | |
| subject: | 2\04 Pt-2 Astronomers Get Ultrasharp Images With Large Telescope |
This Echo is READ ONLY ! NO Un-Authorized Messages Please! ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2\04 Astronomers Get Ultrasharp Images With Large Telescope In Arizona Part 2 of 2 In the MMT's new adaptive optics, a wavefront sensor camera mounted at the base of the telescope senses atmospheric turbulence and sends that information to the MMT adaptive secondary mirror. The powerful computer cluster behind the secondary mirror sends electronic current through coils so that each of 336 actuator magnets spaced across the mirror is instantly moved to the desired position. The result is a "flat," non-wavy wavefront seen by the astronomer's science camera. The unique adaptive optics system also includes its own plumbing. Its half-water, half-methanol liquid cooling system can dissipate up to a kilowatt of heat. DETWINKLING AND BLOCKING STARLIGHT UA astronomer Phil Hinz' observing run Jan. 22 illustrates why the new adaptive optics system is ideal if you're looking for planetary disks or planets around bright, nearby stars. On Jan. 22, Hinz and UA astronomer emeritus Bill Hoffmann took Hinz' nulling interferometer called "BLINC" and Hoffman's infrared "MIRAC" camera to the MMT, while UA, Italian and Smithsonian Institution MMTO staff ran the new adaptive optics. "Without adaptive optics, nulling interferometry is able to suppress the star to only 5 to 10 percent of its original brightness," Hinz said. "In addition, the intensity of the star rapidly changes because of atmospheric turbulence, so the star appears to blink on and off." Nulling interferometry works by creating two "sub-telescopes," both looking at the same bright star, but positioned so starlight from each sub-telescope travels in slightly different paths before hitting the detector. When properly aligned, crests of lightwaves from one sub-telescope will line up with the troughs of the lightwaves from the other, in effect canceling the light of the bright star. Hinz, who used the 6.5-meter MMT as two 3-meter sub-telescopes, said the initial Jan.22 observations were successful in showing the power of adaptive optics to stabilize the star and suppress all but two percent of its light. "Once we've refined this technique, we should be able to stabilize and suppress all but one-tenth of a percent, down to three-hundredths of a percent of the starlight and see faint, planetary dust disks much like our own solar system around nearby stars," Hinz said. "Our own dust disk is about one-hundredth of one percent of the brightness of the sun, which sets the ultimate goal of this technique. This is the level of suppression we're aiming for with the Large Binocular Telescope Interferometer," he added. ADAPTIVE OPTICS FOR THE LBT University of Arizona scientists are developing two adaptive secondary mirrors for the Large Binocular Telescope (LBT) on Mount Graham, said UA astronomer John Hill, who directs the LBT project. The LBT won't have conventional secondary mirrors, Hill said. Each of the LBT's 8.4-primary mirrors will have an adaptive concave (rather than convex) secondary mirror 91 cm (36 inches) across, held by 672 actuators that will bend it moment by moment to the required shape. In principle, even a 6.5-meter ground-based telescope could be used to image a Jupiter-like planet in a solar system like our own within the 8 parsec neighborhood, Mirror Lab director and CAAO director Roger Angel has noted in research papers. (Eight parsecs is about 26 light-years, or more than 153 trillion miles.) As for the really giant telescopes of the future telescopes with 20-meter-or-more diameter primary mirrors ground based telescopes with adaptive secondary mirrors should be able to directly detect and study nearby Earth-like planets, Angel predicts. Success in making deformable adaptive secondary mirrors for large telescopes is "a natural stepping stone to so-called 'multiple-conjugate adaptive optics,'" Lloyd-Hart said. This system would use several deformable mirrors in series and correct for atmospheric turbulence in 3 dimensions. "You could cancel the atmospheric error anywhere you look. You'd have a very large field of view with high resolution all at once. And when you can capture huge fields of view and see them with extreme clarity, then you're talking real scientific progress," Lloyd-Hart said. - End of File - ================ ---* Origin: SpaceBase[tm] Vancouver Canada [3 Lines] 604-473-9357 (1:153/719) SEEN-BY: 633/267 270 @PATH: 153/719 715 7715 140/1 106/2000 633/267 |
|
| SOURCE: echomail via fidonet.ozzmosis.com | |
Email questions or comments to sysop@ipingthereforeiam.com
All parts of this website painstakingly hand-crafted in the U.S.A.!
IPTIA BBS/MUD/Terminal/Game Server List, © 2025 IPTIA Consulting™.