| TIP: Click on subject to list as thread! | ANSI |
| echo: | |
|---|---|
| to: | |
| from: | |
| date: | |
| subject: | Article] Variations on a |
Variations on a splice theme Systematic analysis of exon-exon junctions reveals many novel splice variants By Cathy Holding Based on expressed sequence tag (EST) studies and transcriptome analysis, alternative splicing of pre-messenger RNAs (pre-mRNAs) occurs in a temporal and tissue-specific manner. In the December 19 Science, Jason Johnson and colleagues at Rosetta Inpharmatics report a systematic survey method to capture all possible splice variants that provides experimental evidence and tissue distributions for several thousand known and novel splice isoforms. These data demonstrate that ESTs are biased toward more highly expressed transcripts and that they underrepresent central regions of cDNAs. This suggests that more than 74% of human multi-exon genes are alternatively spliced and provides possible novel therapeutic targets for diseases that are caused by inappropriate transcript splicing events (Science, 302:2141-2144, December 19, 2003). Johnson et al. used a set of five microarrays containing 125,000 36 bp exon-exon junction probes from 10,000 multi-exon genes to examine 52 tissue samples. Hybridization intensities were modeled as a function of tissue-specific expression levels, which gave an exon-by-exon representation of probable splice events. From these, 150 reverse transcription polymerase chain reaction primer pairs were developed to test for the events across the 52 tissue samples, resulting in a genome-wide set of tissue-specific alternative splice event predictions. Splicing events not represented by ESTs were found (e.g., in the 3-hydroxy-3-methyl-glutaryl coenzyme A reductase gene encoding the targets for the statin class of cholesterol-lowering drugs). Of 153 transcript regions tested, 134 contained alternative splice events not represented by mRNAs, and 92 not represented by ESTs. Seventy three were validated by sequencing, and 53 of these were found to be novel. In addition, using the Gene Ontology database, 31 genes with the highest frequency of alternative splice variants were observed to encode proteins involved in cell communication-such as receptor tyrosine kinases-and in enzyme regulation, such as small GTPase regulation. Read the rest at The Scientist.com http://www.biomedcentral.com/news/20031223/01 Comment: 'Exon' is the gene rich DNA, 'Intron' is the non-coding DNA between Exon DNA. Posted by Robert Karl Stonjek. --- þ RIMEGate(tm)/RGXPost V1.14 at BBSWORLD * Info{at}bbsworld.com --- * RIMEGate(tm)V10.2áÿ* RelayNet(tm) NNTP Gateway * MoonDog BBS * RgateImp.MoonDog.BBS at 12/25/03 8:30:21 PM* Origin: MoonDog BBS, Brooklyn,NY, 718 692-2498, 1:278/230 (1:278/230) SEEN-BY: 633/267 270 @PATH: 278/230 10/345 106/1 2000 633/267 |
|
| SOURCE: echomail via fidonet.ozzmosis.com | |
Email questions or comments to sysop@ipingthereforeiam.com
All parts of this website painstakingly hand-crafted in the U.S.A.!
IPTIA BBS/MUD/Terminal/Game Server List, © 2025 IPTIA Consulting™.