| TIP: Click on subject to list as thread! | ANSI |
| echo: | |
|---|---|
| to: | |
| from: | |
| date: | |
| subject: | Article: High life prompt |
High life prompts genetic shift Extreme altitudes have created different coping strategies. 17 February 2004 HELEN PEARSON Inhabitants of the harsh, high-altitude plateaus of the world have evolved to survive lofty conditions in different ways, a new genetic study reveals. Cynthia Beall of Case Western Reserve University in Cleveland, Ohio, studies the inhabitants of the Tibetan plateau, the Ethiopian plateau and the Andean Altiplano in Peru and Bolivia - locations where hardy residents routinely dwell at altitudes of more than 4,000 metres. At these altitudes, the thin air leaves most tourists gasping for breath. "You're getting one third less oxygen every time you take a lungful of air," says Beall. Yet the regular inhabitants appear almost superhuman in their ability to function normally in such extreme conditions. Previous studies have shown that the Tibetan, Ethiopian and Andean populations have developed slightly different ways of boosting their oxygen levels to cope with the thin air. Those in the Andes pump out more haemoglobin - a molecule that carries oxygen around in the blood. The Tibetans, by contrast, have relatively low haemoglobin levels but breathe faster to take in more oxygen. "The slightest bit of exercise makes them really pant," Beall says. To understand what underlies these physiological changes, Beall has begun to explore each population's genetic code: specifically, a short region of DNA in the cells' power-generating mitochondria. This DNA is expected to contain distinctive sequences that might explain how cells churn out energy with little oxygen to fuel them. Beall has examined this DNA from several hundred people in populations from the Andes, Tibet and Ethiopia. Their genetic sequences are largely dissimilar, she revealed at a meeting of the American Association for the Advancement of Science in Seattle this week. This supports the idea that the three groups have separately evolved different tactics to survive in the thin air. Read the rest at Nature http://www.nature.com/nsu/040216/040216-7.html Pigeons take the highway Some birds follow roads instead of flying direct. 10 February 2004 HELEN R. PILCHER Researchers may have discovered how pigeons find their way along familiar routes. Instead of heading straight for their destination, they follow main roads, railways and rivers. Tim Guilford and colleagues from Oxford University fitted more than 50 homing pigeons with tiny tracking devices. They then monitored them, second by second, as they made the familiar journey back to their loft. Some of the birds that used landmarks did so again and again on separate occasions, says Guilford, following a set path to theirloft. "One pigeon flies along the road to the first roundabout, takes the third exit, goes along the dual carriageway to the next roundabout, then leaves the road and goes cross-country," he says. The birds can add an extra 20% or more to their journey by following these features, says Guilford. It may be more demanding physically, he says, but easier mentally. Other birds probably use a similar strategy. Even crows may not fly 'as the crow flies', says Guilford. http://www.nature.com/nsu/040209/040209-1.html Comment: Could pigeons be used as a navigation aid to blind motorists in much the same way as dogs guide them on foot? Talking to bacteria Researchers teach cells a new language. 12 February 2004 PHILIP BALL Scientists have genetically engineered bacteria to 'talk' to each other in a new language1. The achievement brings us one step closer to turning cells into tiny robots that we can control by flooding them with chemicals. Bacteria already communicate with each other by sending out chemical signals. A cell might release a certain chemical in response to stress, for example, letting other cells nearby know they should prepare for some unpleasant environmental conditions. When the chemicals reach a high enough concentration, they switch on genes in neighbouring cells that change their behaviour. But cells typically have a limited number of stimuli that provoke these chemical warnings, and a limited number of chemicals that they can use to communicate. James Liao and co-workers at the University of California, Los Angeles, wondered if they could get bacteria to talk using a different chemical. They started by stitching a 'module' of control genes into the genome of Escherichia coli bacteria - these genes can switch on or off other genes naturally present in the bacteria. This technique has been used before. For example, four years ago researchers at Princeton University in New Jersey added a gene module to E. coli cells that made them blink on and off like light bulbs. The genes did this by prompting the cells to make a light-emitting protein called GFP in regular spurts.2 Liao and colleagues went a step further, modifying E. coli cells to produce GFP only when triggered by a chemical called acetate. Acetate is a normal by-product of the metabolism of E. coli - the cells exude it constantly, rather like sweating. So the bacteria in Liao's lab constantly told each other to light up. The team managed to control the conversation by adjusting the acidity of the cell medium. In non-acidic conditions, it takes more acetate to trigger a cell, so there needs to be a lot of cells secreting acetate to start the conversation. In acidic conditions, just a few cells are enough to start a chat. http://www.nature.com/nsu/040209/040209-7.html Comment: Next we'll hear claims of 'bacteria consciousness'. Boubous belt out victory duet Tropical crooners sing when they're winning. 14 February 2004 HELEN R. PILCHER Football fans aren't the only ones to celebrate a win with a rousing song. Tropical birds called boubous do the same, a study has found. The monogamous birds sing a special 'victory duet' after they have seen potential intruders off their patch, report Ulmar Grafe of the University of Würzburg and Johannes Bitz of the German Primate Centre in Göttingen, Germany, who studied the birds. The researchers played recordings of four bird-song duets, which are often sung by boubous during contests over territory, to 18 different bird couples in Africa's Comoé National Park on the Ivory Coast. Sixteen of the pairs stood their ground. Eleven of these 'winners' broke into their victory song shortly after the recording was turned off. Losers never sang at all1. "The duet is clearly a post-conflict display," says Grafe. Boubous are extremely territorial - they probably sing to deter others from invading their patch, he says. http://www.nature.com/nsu/040209/040209-15.html Posted by Robert Karl Stonjek. --- ţ RIMEGate(tm)/RGXPost V1.14 at BBSWORLD * Info{at}bbsworld.com --- * RIMEGate(tm)V10.2á˙* RelayNet(tm) NNTP Gateway * MoonDog BBS * RgateImp.MoonDog.BBS at 2/18/04 11:22:55 AM* Origin: MoonDog BBS, Brooklyn,NY, 718 692-2498, 1:278/230 (1:278/230) SEEN-BY: 633/267 270 @PATH: 278/230 10/345 106/1 2000 633/267 |
|
| SOURCE: echomail via fidonet.ozzmosis.com | |
Email questions or comments to sysop@ipingthereforeiam.com
All parts of this website painstakingly hand-crafted in the U.S.A.!
IPTIA BBS/MUD/Terminal/Game Server List, © 2025 IPTIA Consulting™.