| TIP: Click on subject to list as thread! | ANSI |
| echo: | |
|---|---|
| to: | |
| from: | |
| date: | |
| subject: | Artcile: `Junk` DNA revea |
'Junk' DNA reveals vital role Inscrutable genetic sequences seem indispensable. 7 May 2004 HELEN PEARSON If you thought we had explored all the important parts of our genome, think again. Scientists are puzzling over a collection of mystery DNA segments that seem to be essential to the survival of virtually all vertebrates. But their function is completely unknown. The segments, dubbed 'ultraconserved elements', lie in the large parts of the genome that do not code for any protein. Their presence adds to growing evidence that the importance of these areas, often dismissed as junk DNA, could be much more fundamental than anyone suspected. David Haussler of the University of California, Santa Cruz, and his team scanned the genome sequences of man, mouse and rat1. They found more than 480 ultraconserved regions that are completely identical across the three species. That is a surprising similarity: gene sequences in mouse and man for example are on average only 85% similar. "It absolutely knocked me off my chair," says Haussler. The regions largely match up with chicken, dog and fish sequences too, but are absent from sea squirt and fruitflies. The fact that the sections have changed so little in the 400 million years of evolution since fish and humans shared a common ancestor implies that they are essential to the descendants of these organisms. But researchers are scratching their heads over what the sequences actually do. The most likely scenario is that they control the activity of indispensable genes. Nearly a quarter of the sequences overlap with genes and may be converted into RNA, the intermediate molecule that codes for protein. The sequences may help slice and splice RNA into different forms, Haussler suggests. Another set may control embryo growth, which follows a remarkably similar course in animals ranging from fish to humans. One previously identified ultraconserved element, for example, is known to direct a gene involved in the growth of the brain and limbs. To solve the conundrum, experts predict a flurry of studies into the enigmatic DNA chunks. "People will be intrigued by this [finding]," says Kelly Frazer who studies genomics at Perlegen Sciences in Mountain View, California. "It is the kind of stuff that blows people away." Read the rest at Nature: http://www.nature.com/nsu/040503/040503-9.html Comment: If the "junk DNA", intron, is not junk afteral, then we haven't sequences the the human genome at all - we have only catelogued the 'classic' protien coding DNA, and not the all important (?) ultraconserved elements.. Posted by Robert Karl Stonjek. --- þ RIMEGate(tm)/RGXPost V1.14 at BBSWORLD * Info{at}bbsworld.com --- * RIMEGate(tm)V10.2áÿ* RelayNet(tm) NNTP Gateway * MoonDog BBS * RgateImp.MoonDog.BBS at 5/11/04 6:03:19 AM* Origin: MoonDog BBS, Brooklyn,NY, 718 692-2498, 1:278/230 (1:278/230) SEEN-BY: 633/267 270 @PATH: 278/230 10/345 106/1 2000 633/267 |
|
| SOURCE: echomail via fidonet.ozzmosis.com | |
Email questions or comments to sysop@ipingthereforeiam.com
All parts of this website painstakingly hand-crafted in the U.S.A.!
IPTIA BBS/MUD/Terminal/Game Server List, © 2025 IPTIA Consulting™.