| TIP: Click on subject to list as thread! | ANSI |
| echo: | |
|---|---|
| to: | |
| from: | |
| date: | |
| subject: | Article: Intestine in the |
Intestine in the lung [moderator's note: This gets my vote for ickiest title so far. Sounds like the aftermath of a (American) football game. - JAH] Jonathan MW Slac Abstract The phenomenon of metaplasia, in which one tissue type is converted into another, is beginning to be explained in molecular terms. The transformation of lung to intestinal tissue has not previously been described, but it is now reported that it can be brought about by prolonged Wnt signaling in late development. The transformation of one tissue type to another, a process called metaplasia, is a fascinating aspect of both pathology and developmental biology. Metaplasias represent the homeotic transformations of vertebrates, comparable to the homeotic mutations in Drosophila that can transform antenna to leg or wing to haltere [1]. Of particular developmental interest are cases where tissues are transformed to other types that normally occur elsewhere in the body, as for example in the formation of intestinal tissue from the esophageal epithelium in the condition known as Barrett's esophagus [2]. Both the intestine and the esophagus arise from the endoderm of land vertebrates, which starts out as a simple sheet, or tube, of cells that becomes a series of epithelial tissue types; these are, arranged roughly from cranial to caudal: esophagus, trachea, bronchi, lungs, stomach, liver, pancreas, small intestine, and colon. These epithelia arise in different places because of distinct inductive signals from the mesoderm that is associated with the endoderm in different locations [3]. (The endoderm and mesoderm are the inner and middle two, respectively, of the three original cellular layers of the vertebrate embryo from which the adult tissues arise.) The ultimate source of the positional information in the mesoderm may be the pattern of expression of Hox genes, which is set up in early development, but this is not yet certain [4]. It has become a well-established principle of developmental biology that the identity of a tissue type is specified by the combination of transcription factors activated during embryonic development. Only a small subset of transcription factors is involved in this process, acting combinatorially to form developmental 'codes' that correspond to particular tissue types. If the genes encoding these factors are turned on or off inappropriately then the code is changed to that for a different tissue type and a homeotic transformation results [5]. These genes are thus the ones usually described as homeotic genes, or selector genes or master regulator genes (depending on the organism of interest). For the endoderm-derived epithelia, each homeotic gene is normally active in only one region, so there is a correspondence between epithelial tissue type and body part, and the similarity between metaplasias and homeosis in Drosophila is quite clear-cut. Read the rest at the Journal of Biology http://jbiol.com/content/3/3/10 (Requires free registration) Posted by Robert Karl Stonjek. --- þ RIMEGate(tm)/RGXPost V1.14 at BBSWORLD * Info{at}bbsworld.com --- * RIMEGate(tm)V10.2áÿ* RelayNet(tm) NNTP Gateway * MoonDog BBS * RgateImp.MoonDog.BBS at 6/8/04 9:39:04 PM* Origin: MoonDog BBS, Brooklyn,NY, 718 692-2498, 1:278/230 (1:278/230) SEEN-BY: 633/267 270 @PATH: 278/230 10/345 106/1 2000 633/267 |
|
| SOURCE: echomail via fidonet.ozzmosis.com | |
Email questions or comments to sysop@ipingthereforeiam.com
All parts of this website painstakingly hand-crafted in the U.S.A.!
IPTIA BBS/MUD/Terminal/Game Server List, © 2025 IPTIA Consulting™.