| TIP: Click on subject to list as thread! | ANSI |
| echo: | |
|---|---|
| to: | |
| from: | |
| date: | |
| subject: | Paper: Adaptive evolution |
Adaptive evolution of centromere proteins in plants and animals Paul B Talbert , Terri D Bryson and Steven Henikoff Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109-1024, USA Journal of Biology 2004, 3:18 doi:10.1186/jbiol11 The electronic version of this article is the complete one and can be found online at: http://jbiol.com/content/3/4/18 Received 25 May 2004 Revisions received 20 July 2004 Accepted 22 July 2004 Published 31 August 2004 © 2004 Talbert et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ---------------------------------------------------------------------------- Abstract Background Centromeres represent the last frontiers of plant and animal genomics. Although they perform a conserved function in chromosome segregation, centromeres are typically composed of repetitive satellite sequences that are rapidly evolving. The nucleosomes of centromeres are characterized by a special H3-like histone (CenH3), which evolves rapidly and adaptively in Drosophila and Arabidopsis. Most plant, animal and fungal centromeres also bind a large protein, centromere protein C (CENP-C), that is characterized by a single 24 amino-acid motif (CENPC motif). Results Whereas we find no evidence that mammalian CenH3 (CENP-A) has been evolving adaptively, mammalian CENP-C proteins contain adaptively evolving regions that overlap with regions of DNA-binding activity. In plants we find that CENP-C proteins have complex duplicated regions, with conserved amino and carboxyl termini that are dissimilar in sequence to their counterparts in animals and fungi. Comparisons of Cenpc genes from Arabidopsis species and from grasses revealed multiple regions that are under positive selection, including duplicated exons in some grasses. In contrast to plants and animals, yeast CENP-C (Mif2p) is under negative selection. Conclusions CENP-Cs in all plant and animal lineages examined have regions that are rapidly and adaptively evolving. To explain these remarkable evolutionary features for a single-copy gene that is needed at every mitosis, we propose that CENP-Cs, like some CenH3s, suppress meiotic drive of centromeres during female meiosis. This process can account for the rapid evolution and the complexity of centromeric DNA in plants and animals as compared to fungi. ---------------------------------------------------------------------------- Read the full text at Journal of Biology (Open Access Paper) http://jbiol.com/content/3/4/18 Posted by Robert Karl Stonjek --- þ RIMEGate(tm)/RGXPost V1.14 at BBSWORLD * Info{at}bbsworld.com --- * RIMEGate(tm)V10.2áÿ* RelayNet(tm) NNTP Gateway * MoonDog BBS * RgateImp.MoonDog.BBS at 9/3/04 6:11:31 AM* Origin: MoonDog BBS, Brooklyn,NY, 718 692-2498, 1:278/230 (1:278/230) SEEN-BY: 633/267 270 @PATH: 278/230 10/345 106/1 2000 633/267 |
|
| SOURCE: echomail via fidonet.ozzmosis.com | |
Email questions or comments to sysop@ipingthereforeiam.com
All parts of this website painstakingly hand-crafted in the U.S.A.!
IPTIA BBS/MUD/Terminal/Game Server List, © 2025 IPTIA Consulting™.